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ding in the other two. This technique permits a fine grid
to be embedded near the wall without placing a largeA B-spline based numerical method on a zonal embedded grid

has been developed. The method is aimed at reducing the computa- number of grid points in the outer layers. As a result, the
tional requirements for large eddy simulations (LES) and direct nu- total number of grid points is reduced which leads to sav-
merical simulations (DNS) of wall-bounded turbulent flows. The ings in CPU time and memory.
objective is to reduce the number of grid points required to resolve

A pacing item for large eddy simulations of highthe near-wall eddies without placing a large number of grid points
Reynolds number flows of engineering interest is an accu-in the outer layers. DNS and LES calculations of a turbulent channel
rate treatment of the near-wall turbulence structures. Asflow were performed on a grid with a zone near the wall that was

refined in all three directions. The results from the zonal grid calcula- pointed out by Moin and Jimenéz [1], the near wall struc-
tions show good agreement with previously published numerical tures are the important large eddies, so they cannot be
and experimental results obtained for the same flow conditions. treated accurately with subgrid scale parameterizations.
The zonal grid calculations required only a fraction of the CPU time

Instead, they need to be resolved or completely modeledrequired for the single zone grid calculation with the same near-
with dynamic wall functions [2–3]. An efficient computa-wall grid density. In addition, the memory requirements for the zonal

grid calculations are significantly reduced. Q 1996 Academic Press, Inc. tion of these structures can be achieved with zonal grids.
This is an important step in computation of higher
Reynolds number flows of aerodynamic interest.

1. INTRODUCTION Zonal grid techniques have been mostly used with finite-
difference or finite-volume methods to resolve solution

Direct numerical and large eddy simulations (DNS and and/or geometry complexity in computations of compress-
ible [4–6] and incompressible [7–8] flows. In these studies,LES) have been widely used to study the physics of turbu-

lence. However, turbulence simulations have been limited a particular concern has been the numerical treatment of
the regions where zones with different grid densities meet.to flows in simple geometries. The computations of flows

in complex geometries are still very expensive. Usually, a high-order accurate interpolation procedure is
required to exchange information between zones. Also, aIn wall-bounded turbulent flows, the near-wall flow

structures are small compared to the overall flow dimen- special treatment of the internal grid boundaries is neces-
sary to maintain conservation. However, in many cases, itsions. These small structures play an important role in the

dynamics of turbulent boundary layers and should be well is difficult to achieve both high accuracy and conservation
at the same time with finite difference or finite volumeresolved. In typical computations of mean flow, grid-

stretching in the direction normal to the wall is used to methods on zonal grids [6].
The objective of our study is to develop an efficientresolve large mean velocity gradients. However, in turbu-

lence simulations a fine mesh is also required near the wall method for turbulence simulations on zonal embedded
grids and test its accuracy and consistency. In particular,in the directions parallel to the wall. This fine resolution

is normally extended into the outer layers where it is we want to study the effect of zonal boundaries on turbu-
lent eddies crossing them. In this paper, we consider prob-not required.

The grid refinement in near-wall regions can be done lems where turbulence is inhomogeneous in one direction
(y) and homogeneous in the other two directions (x andmore efficiently with zonal embedded grids. In this ap-

proach, several regions (zones) of grids are constructed in z). However, the approach can be extended to the case of
two or three inhomogeneous directions. In the homoge-such a way that the mesh spacing decreases from zone to

zone as one approaches the wall. One can also choose to neous directions, we use Fourier spectral methods [9]. A
Galerkin method with B-spline basis functions [10] is usedcombine grid-stretching in one direction with zonal embed-
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in the inhomogeneous direction. B-splines as basis-func- ­

­t
=2v 5 hv 1

1
Re

=4v, (3)tions have been used in several numerical studies [11–13]
to solve a variety of time-dependent test problems. For
simulations on zonal embedded grids, a B-spline based

­
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g 5 hg 1

1
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=2g, (4)
method appears to offer many advantages over other nu-
merical methods. B-splines have local support which leads

f 1
­v
­y

5 0, (5)to banded matrices that can be efficiently stored and
solved. They also provide high accuracy and are C k21 con-

wheretinuous (where k is the order of a B-spline) which allows
velocity derivatives to be accurately and smoothly repre-
sented. The construction of the higher order B-splines is f 5
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done using a recursive relationship which makes imple-
mentation of a B-spline based method straightforward. B-
splines can be defined on any type of grid distribution and, hv 5 2

­
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thus, provide great flexibility in choosing a grid-stretching
based on the physics of a problem. A method based on B-

hg 5
­Hu

­z
2

­Hw

­x
. (8)splines does not experience the difficulties of finite-differ-

ence methods in maintaining conservation properties and
handling physical and zonal boundary conditions. Let ũ be a numerical approximation to u. Using the

The numerical method is tested on simple model prob- method of weighted residuals, we obtain the discrete weak
lems which include the evolution of small disturbances in forms of Eqs. (3) and (4),
channel flow and a vortex dipole rebound from a wall.
These tests indicated that B-spline methods have the po- E

V
j

­

­t
=2ṽ dV 5 E

V
jh̃v dV 1 E

V
j

1
Re

=4ṽ dV, (9)tential of accurately simulating unsteady flows. The latter
test also showed that the eddies can pass through the em-
bedded zones without noticeable distortions. The method E

V
z

­

­t
g̃ dV 5 E

V
zh̃g dV 1 E

V
z

1
Re

=2g̃ dV, (10)
also proved to be both accurate and cost-effective. Further-
more, DNS and LES calculations of fully developed turbu-

where j and z are the weight functions, which we selectlent channel flow were carried out in order to compare
to besimulations on zonal embedded grids with existing numeri-

cal and experimental results.
j(x, y, z) 5 e2ik9

xxe2ik9
zzBk

i (y),
(11)

The numerical method is briefly outlined in Section 2.
The implementation of a zonal grid structure is presented

z(x, y, z) 5 e2ik9
xxe2ik9

zzBk21
i (y).in Section 3. Numerical tests are described in Section 4,

followed by a summary in Section 5.
The numerical approximation of the velocity vector

ũ 5 (ũ, ṽ, w̃) is written in terms of spectral and B-spline
2. GOVERNING EQUATIONS AND THE functions,

NUMERICAL METHOD

ṽ(x, y, z, t) 5 O
kx, j,kz

v̂j(kx , kz , t)eikxxeikzzBk
j (y), (12)

We consider incompressible flows governed by the Na-
vier–Stokes equations,

Sũ

w̃
D (x, y, z, t) 5 O
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where Bk
j (y) is the B-spline of order k [10]. B-spline func-

= ? u 5 0, (2) tions of order k are defined on a set of knot points tj by
the recursive relationship

where Re is the Reynolds number, u 5 (u, v, w) is the
velocity vector, and H 5 u 3 v 5 (Hu , Hv , Hw) is the Bk

j (y) 5
(y 2 tj)

(tj1k 2 tj)
Bk21

j (y) 1
(tj1k11 2 y)

(tj1k11 2 tj11)
Bk21

j11 (y), (14)
convective term. Following the same approach as in [14]
one can reduce Eqs. (1) and (2) to a fourth-order equation
for v and a second-order equation for the normal compo- where a B-spline of order zero is a top hat function; i.e.,

B0
j (y) 5 1 if tj # y # tj11 and 0 otherwise. An example ofnent of vorticity g,
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The number of diagonals in the matrices is just 2k 1 1,
where k is the order of the B-splines. Also note, that for
Ny knot points there are Ny 1 k B-splines of order k and
Ny 1 k 2 1 B-splines of order k 21. Accordingly, there
are Ny 1 k B-spline coefficients for v and Ny 1 k 2 1 B-
spline coefficients for u, w, and g.

The boundary conditions are imposed strongly. Consider
the boundary conditions for a channel flow that follow
from the no-slip conditions at the walls (y 5 61),

ṽ(x, 61, z, t) 5
­

­y
ṽ(x, 61, z, t) 5 g̃(x, 61, z, t) 5 0.

Setting the B-spline coefficients,FIG. 1. Second-order B-splines shown on a uniform 10-point knot
set. Knot points are indicated with d.

v̂1 5 v̂2 5 v̂Ny1k21 5 v̂Ny1k 5 ĝ1 5 ĝNy1k21 5 0, (17)

the quadratic B-splines (k 5 2) defined on a uniformly will satisfy these boundary conditions. For brevity in (17),
spaced set of 10 knots is shown in Fig. 1. Note that all we used v̂j 5 v̂j(kx , kz , t). Note that since the boundary
interior B-splines are zero at the boundaries. Only the conditions (17) are imposed strongly, the use of integration
boundary B-splines are nonzero at the boundary points. by parts to modify the matrix elements in Eqs. (15) and
This property will be exploited later to impose boundary (16) does not introduce boundary terms. For example, the
conditions. last term in the expression for dv

i j can be written as
The v-velocity is represented in terms of B-splines which

are one order higher than the B-spline expansion functions E Bk
i

­4

­y4 Bk
j dy 5 E ­2

­y2 Bk
i

­2

­y2 Bk
j dy.for u and w. This allows the continuity equation, Eq. (5),

to be satisfied exactly by the numerical representation.
Evaluating the integrals in Eqs. (9) and (10), we obtain The time-advancement is carried out with a semi-implicit

matrix equations for v̂ and ĝ for each independent Fourier scheme that uses Crank–Nicholson for the viscous terms
mode (kx , kz), and third-order Runge–Kutta for the nonlinear terms [15].

All time-dependent simulations were performed with vari-
able time steps and at a CFL number never exceeding Ï3·,Mv

dv̂
dt

5 Dvv̂ 1 Rv(û, v̂, ŵ), (15)
as required by the stability of the third-order Runge–
Kutta scheme.

Mg
dĝ
dt

5 Dgĝ 1 Rg(û, v̂, ŵ), (16) To compute the nonlinear terms Rv and Rg , the integrals
involving hv and hg in Eqs. (9) and (10) must be evaluated.
As an example, consider one term in the expression forwhere Rv , Rg are the expressions resulting from the nonlin-
hv and the resulting integral,ear terms and Mv , Mg , Dv , Dg are banded matrices with

elements given by

E
V

e2ik9
xxe2ik9

zzBk
l (y)

­

­y
ṽ
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All the other terms are similar. In the x and z directions,
mg

ij 5 E Bk21
i Bk21

j dy, the integral is evaluated using numerical quadrature on a
uniform mesh. By using Ds as many quadrature points in
each direction as Fourier modes, the quadratures are made

dv
i j 5

1
Re F(k2

x 1 k2
z)2 E Bk

i Bk
j dy 2 2(k2

x 1 k2
z) E Bk

i
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j dy exact. This is dealiasing by the Ds rule. The quadratures in

y are evaluated using precomputed integrals of the prod-
ucts of B-splines and their derivatives. The computations

1 E Bk
i

­4
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j dyG,

are accomplished by evaluating the B-spline coefficients
of the velocity components (ũ, ṽ, w̃) as functions of x and
z on the quadrature points using fast Fourier transformsdg

ij 5
1

Re F2(k2
x 1 k2
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(FFTs). The y integrals can then be evaluated as
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at each quadrature point, where the integral in brackets
(Ilmn) can be precomputed exactly. Since the B-splines have
local support, Ilmn is nonzero only if ul 2 mu # k,
ul 2 nu # k and um 2 nu # k. Thus, the sums in (18) can
be evaluated in order Nbk2 operations, where Nb is the
number of B-splines used in the y direction. Once (18) and
the other terms have been evaluated, the quadrature sums
in the x and z directions are evaluated using FFTs. FIG. 2. Zonal embedded grid with fine grid zones near the walls and

coarse zones in the middle.

3. ZONAL GRID IMPLEMENTATION

The motivation for zonal embedded grids is to use them
accomplished by simply varying the ranges of the kx andin large eddy simulations of complex turbulent flows. This
kz sums in the representations (12) and (13) with the B-section presents the grid resolution requirements in the
spline index j. The kx and kz ranges of the weight functionsnear-wall and outer layers for large eddy simulations of
(11) are varied similarly. Since the B-splines are local inwall-bounded turbulent flows and describes the implemen-
y, this has the desired effect. However, each interior B-tation of a zonal embedded grid.
spline has support on k 1 1 knot intervals, so there isThe average streamwise and spanwise scales of near-
overlap between B-splines associated with differentwall flow structures are of the order 500n/ut and 100n/ut ,
horizontal resolutions. Thus, the actual change in hori-respectively, [14], where ut is the shear velocity and n is
zontal resolution takes place over k knot intervals,the kinematic viscosity. Experience with LES of channel
which is expected to soften the effect of the resolutionflows indicates that adequate resolution of these structures
change.requires minimum grid spacings in the near-wall region:

The important issue that arises in all zonal embeddedDx1 Q 120 and Dz1 Q 25, where 1 indicates a nondimen-
grid studies is the influence of the zonal boundaries onsionalization by shear velocity ut and kinematic viscosity
the eddies that cross them. We address this question inn. For simulations of turbulent channel flow at Ret 5
studies of a vortex dipole rebounding from a wall and theutd/n 5 4000 on the domain Lx 5 2fd, Ly 5 2d, and
numerical simulation of a turbulent channel flow (seeLz 5 fd/2 this translates into Nx Q 192 in the streamwise
below).direction and Nz Q 256 in the spanwise direction. In the

outer layer, turbulent eddy sizes scale with d (where d is
the boundary layer thickness), and the average resolution

4. RESULTS AND DISCUSSIONis about Dx 5 Dz Q d/10 [16], which requires Nx Q 64
and Nz Q 16 points. Such grid requirements can be most

This section presents some results of the numerical testsefficiently satisfied with zonal grids. However, a smooth
that have been conducted to assess the performance ofmesh size transition from the near-wall region to the outer
the B-spline method and zonal embedded grids. It alsolayer is desirable to avoid problems associated with trunca-
contains the results of direct numerical and large eddytion errors. This is achieved with several intermediate
simulations of fully developed turbulent channel flows atzones.
Reynolds numbers up to Rec 5 Ucd/n p 1.1 3 105.A cross section of a typical 3D zonal embedded ‘‘grid’’

for a channel flow simulation is shown in Fig. 2. The hori-
zontal grid lines are the knots of the spline representation

4.1. Solution of the Orr–Sommerfeld Stability Equation
of the vertical direction and the vertical lines represent
the Nyquist spatial sampling rate required for the Fourier In this test, we consider the most unstable linear instabil-

ity mode of a plane Poiseuille flow with the wavenumberrepresentation of the solution at each y location. Note that
both the vertical and horizontal grid resolution varies with a 5 1 and Re 5 10,000 and compare the performance of

the B-spline method with that of the Chebyshev methody, with the horizontal resolution changing in steps. The
y-locations of these step changes are called zonal bound- [17]. B-splines are used as expansion functions to approxi-

mate solutions of the Orr–Sommerfeld equation:aries. The variation of the horizontal resolution in y is
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4.2. Propagation of Small Disturbances in a Channel

To examine the accuracy and robustness of the numeri-
cal method, we study the evolution of small amplitude
disturbances in channel flow. When the amplitude of the
disturbances imposed on the laminar parabolic profile is
small, the solution of Eqs. (1) and (2) is known from the
linear theory. The flow field is initialized as

u(x, y, t) 5 1 2 y2 1 «u9,

v(x, y, t) 5 «v9,

where the disturbances u9 and v9 are taken to be eigensolu-
tions of the Orr–Sommerfeld equation and « 5 1024 is a

FIG. 3. Errors in eigenvalues obtained with: ———, B-splines of small factor.
second order; –––, B-splines of third order; ???, B-splines of fourth order; The numerical value of perturbation energy defined as–?–, Chebyshev polynomials.

E(t) 5 ELx

0
Ed

2d
(u92 1 v92) dx dy

is computed and compared to the exact solution. The par-S d2

dy2 2 a2D2

v 2 ia Re Uo(y) S d2

dy2 2 a2D v
(19) ticular problem chosen for this test is the same as that

described in [18] with one unstable mode for Rec 5 7500,
where Rec is the Reynolds number based on centerline1 ia Re U0o(y)v 5 2iga Re S d2

dy2 2 a2D v,
velocity and channel half-width, Rec 5 Ucd/n. In this case,
the perturbation energy grows exponentially in time, E(t)/
E(0) 5 e2git, where gi 5 0.00223498.where Re is the Reynolds number, g is the temporal fre-

Figures 4 and 5 show the evolution of perturbation en-quency, and Uo(y) 5 1 2 y2 is the laminar velocity profile
ergy in the channel for three different grids. B-splines ofof a Poiseuille flow between parallel planes.
different order are considered. The results obtained withUsing the method of weighted residuals with B-splines
quadratic and cubic B-splines for v-velocity are shown inas expansion and test functions, we obtain a matrix form
Figs. 4 and 5, respectively. The B-splines for u-velocity areof Eq. (19):
always one order lower. In both cases, the results are very
inaccurate for small number of mesh points Ny 5 16. Obvi-

Av̂ 5 gBv̂, (20) ously, the resolution is inadequate in these cases. However,
the results for Ny 5 32 are substantially better. In fact,

where v̂i are the coefficients in the expansion of v in terms
of B-splines. The matrix eigenvalue problem (20) is solved
to find the eigenvalue with the largest imaginary part.

Figure 3 shows the relative error of the numerical
schemes based on B-splines of various orders. The errors
are estimated as « 5 ugi 2 g0

i u, where g0
i is the imaginary

part of the most accurately found eigenvalue: g0 5
0.23752649 1 0.00373967i. As expected, the higher the
order of the B-splines the faster the convergence of the
method. The method based on fourth-order B-splines for
v-velocity produces results which are very close in accuracy
to the results obtained with the spectral Chebyshev
method. In fact, by increasing the order of the B-splines
we are able to match the performance of the Chebyshev
method. However, as was mentioned above, the advantage
of the B-splines is that, unlike the Chebyshev polynomials, FIG. 4. Perturbation energy growth for channel flow (Rec 5 7500).
they provide the flexibility of choosing any type of grid Fourier spectral method in x and B-spline method in y are used. B-splines

of order 2 are used for v-velocity and of order 1 for u-velocity.stretching and are spatially compact.
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small and they can be reduced by choosing a smaller grid
change (as in case 2) or by adding an extra zone to provide
a smoother grid transition (not shown).

The strength and the size of these vortices are larger than
those of typical eddies in high Reynolds number turbulent
flows, but the fact that the zonal boundary does not have
a destructive effect on the results is very promising.

4.4. DNS of Turbulent Channel Flow

To demonstrate the applicability of the method to com-
putations of turbulent flows, we performed direct numeri-
cal simulations of a fully developed turbulent channel flow
at Reynolds number Rec 5 Ucd/n 5 3300. The simulations

FIG. 5. Perturbation energy growth for channel flow (Rec 5 7500). were carried out on two grids: a one-zone coarse gridFourier spectral method in x and B-spline method in y are used. B-splines
(64 3 96 3 64) and a three-zone grid with two zonesof order 3 are used for v-velocity and of order 2 for u-velocity.
(96 3 32 3 96) near both walls refined in the streamwise
and spanwise directions and one coarse grid zone (64 3
32 3 32) in the middle of the channel. In both cases,cubic B-splines on this mesh produce an energy evolution
the grid was stretched in the wall-normal direction with acurve which is virtually identical to the exact curve.
hyperbolic tangent stretching function. Also note that in

4.3. Vortex Dipole Rebound from a Wall the case of the zonal grid, the number of grid points in the
spanwise direction in the middle zone is smaller than thatTo gain insight into how sudden changes in the grid
of the 1-zone coarse grid. As shown later, this grid stillsize affect the dynamics of eddies in turbulent flows, we
provides an adequate resolution and at the same time re-performed numerical simulations of a two-dimensional
duces the CPU time and memory requirements.vortex dipole impinging on a flat wall [19]. In this test

The flow field is initialized asproblem, a vortex dipole is introduced in the middle of
the channel. As the dipole approaches the lower wall, it

u(x, y, z, t) 5 1 2 y2 1 «u9,creates a region of strong vorticity at the wall. Later in
time, this vorticity sheet detaches from the wall to form a v(x, y, z, t) 5 «v9, (21)
secondary vortex pair. The strength of the vorticity de-

w(x, y, z, t) 5 «w9,creases continuously due to viscous dissipation.
The Reynolds number of the initial vortex is chosen to

be Re 5 G/n 5 1800, where G is the circulation of the where u9, v9, and w9 are random numbers scaled to vary
between 21 and 1 and « 5 0.1. Equations (3) and (4)vortex, and n is the kinematic viscosity. The size of the

computational domain was chosen to be fd and 2d in the are then integrated in time until the flow field reaches a
statistically steady state. Typical computations requiredspanwise and normal directions, respectively, where d is

the channel half-width. The computations were carried out six nondimensional time units (tut/d) to reach statistically
steady state and about eight additional time units to accu-on three different grids which are shown in Fig. 6. A single

zone fine grid had 64 3 64 mesh points. Zonal grids had mulate statistics. The simulations were performed at a con-
stant mass flow rate.the near-wall zone with the same resolution as the single

zone fine grid and a coarser zone in the middle of the The mean velocity profile non-dimensionalized by the
wall shear velocity is shown in Fig. 7. The present resultschannel. In case 1, the ratio of the fine grid spacing to the

coarse grid spacing was Dzf /Dzc 5 0.5; in case 2, this ratio are compared to the fine grid DNS of [14] which was done
with a spectral method using 128 3 129 3 128 modes. Thewas Dzf /Dzc 5 0.75.

Figure 6 shows the vorticity field in the channel at five dashed line shows the results of computations on a 1-zone
coarse grid. The velocity profile in this case is below theconsecutive times, obtained in simulations on the three

grids. It is clear that there is no distortion in the shape and fine-grid DNS of [14] and the log-law, indicating that there
is an inadequate grid resolution in the near-wall region.the strength of the vortex dipole due to the presence of

the zonal boundary. The differences between the two-zone By switching to a zonal grid with an increased number of
grid points in the streamwise and spanwise directions nearand single-zone results with the same grid density near the

wall are minimal. There are some noticeable differences the walls, we obtain results that are in a very good
agreement with the DNS of [14]. In addition, we can furtherbetween the single grid and the case 1 zonal grid calcula-

tions at the lowest contour level. These differences are decrease the spanwise grid spacing in the middle zone
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FIG. 6. Time sequence of the evolution of a vortex dipole from tG/d2 5 2 to 26 with increments of 6. Contour levels of the vorticity gxd2/G
range from 210 to 10 by increments of 0.33; negative contours are dashed. (a) Zonal grid with coarse to fine grid size ratio 2; (b) zonal grid with
coarse to fine grid size ratio Fd; (c) single-zone grid.

without damaging the results but gaining substantial sav- fine grid zone and the coarse grid zone indicating that there
is no noticeable impact of the zonal boundaries on theings in CPU time and memory requirements.

Figure 8 shows the turbulence intensities normalized by turbulent intensities.
The Reynolds shear stress normalized by the wall shearthe wall shear velocity obtained by zonal grid simulations.

The agreement with the fine grid DNS of [14] is very good. velocity is shown in Fig. 9. The straight line profile of the
total shear stress indicates that the flow has reached anVery importantly, there is a smooth transition between the
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FIG. 7. Mean velocity profile of fully developed turbulent channel
flow at Rec 5 3300. DNS on 3-zone grid: ——s—; DNS of [14]: ———; FIG. 9. Reynolds shear stress normalized by the wall shear velocity
DNS on 1-zone grid: –––. shown on two grids. Zonal grid DNS: s, 2u9v9; ———, total shear stress

2u9v9 1 (1/Re)­u/­y. DNS of [14]: –––, 2u9v9. Lines ??? show the loca-
tions of the zonal boundaries.

equilibrium state. The results of the zonal grid simulations
are shown, together with the Reynolds shear stress ob-

wise grid spacings in the middle zone are relatively coarse,tained in [14]. Once again, the agreement between these
there is no apparent effect on the energy spectra in thetwo simulations is excellent, and there is no disruption of
near-wall region. The near-wall one-dimensional energythe profile at the zonal boundaries.
spectra for the single zone coarse simulations are shownFigures 10 and 11 show one-dimensional streamwise and
with dashed lines in Fig. 10. In this simulation, the grid inspanwise energy spectra in the near-wall region and in the
the near-wall region is known to be too coarse. As a result,middle of the channel. Here, kx and kz are the wave num-
there is insufficient decay of energy at the high wave num-bers in the streamwise and spanwise directions, respec-
bers in both the streamwise and spanwise spectra.tively. These spectra are in excellent agreement with those

Comparing the computational requirements for the B-shown by Kim et al. in [14]. There are reasonable decays
spline method and the Chebyshev polynomials basedin the energy densities and there is no energy pileup at
method used in [14] we found that single zone simulationsthe high wave numbers. The grid resolutions in all grid

zones are adequate. Although, the spanwise and stream-

FIG. 8. Root-mean-square velocity fluctuations normalized by the
wall shear velocity shown on two grids. Zonal grid DNS: ——s—, urms; FIG. 10. One-dimensional energy spectra at y1 Q 5.4: ———, multi-

zone grid; ???, single-zone grid; s, DNS of [14]: (a) streamwise; (b)——n—, vrms; ——h—, wrms . DNS of [14]: ———, urms; –?–, vrms; –––, wrms .
Lines ??? show the locations of the zonal boundaries. spanwise.
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model the small scales [20–21]. In the present study, we
use the dynamic subgrid scale model [20] with the modifi-
cation of [22]. Grid and test filtering are performed with
a Fourier cutoff in the homogeneous directions. In the
wall-normal direction, no test filtering is performed. In
each homogeneous direction, the ratio of the test filter
width to the grid filter width was 2.

We performed large eddy simulations of a fully devel-
oped turbulent channel flow at Rem 5 2Umd/n 5 4.631 3
104 and Rem 5 1.915 3 105, where Um is the bulk velocity
defined by Um 5 (1/2d) ed

2d U(y) dy. A summary of all
computed cases is presented in Table I. In the wall normal
direction the resolution was 0.6 # Dy1 # 130 in cases 1
and 2 and 1.0 # Dy1 # 100 in case 3. In the first two cases,
the B-splines of order 3 (for v-velocity) and 2 for (u- and
w-velocities) were used. The B-splines of order 2 and 1
were used in the last case.

FIG. 11. One-dimensional energy spectra at y1 Q 128. Zonal grid The flow was initialized as in the case of DNS (see Eq.
DNS: ———, Euu; –––, Evv; ---, Eww . DNS of [14]: s, Euu; h, Evv; n, (21)). All simulations were performed with a constant mass
Eww . (a) streamwise; (b) spanwise.

flow. In the beginning, the computations were carried out
on a single-zone coarse grid until a turbulent mean velocity
profile was obtained. Then, the computations were contin-

with the B-spline method require about the same amount ued on a multi-zone grid to a statistically steady state and
of CPU time per time step as the method of [14] with the compared to the results of the single-zone coarse grid simu-
same number of grid points and on the same computer lations and experiments. Typical computations required
platform (Cray C90). Increasing the order of the B-splines four nondimensional time units (tut/d) to reach a statisti-
does not cause a significant increase in the overall CPU cally steady state and approximately six additional time
time per time step. The advantage of the B-spline scheme units to accumulate statistics. The distribution of grid
is the ability to use zonal embedded grids. For example, points for the cases considered is shown in Fig. 12.
using zonal grids for simulations of turbulent channel flow Figure 13 shows the mean velocity profile nondimension-
at Reynolds number Rec 5 3300 provides an additional alized by the wall shear velocity for cases 1 and 2. The
30% reduction in CPU time and memory requirements symbols represent the experimental data of [23, 24] ob-
over single grid simulations of the same flow with the same tained at Reynolds numbers Rec 5 23,191 and Rec 5
near-wall resolution. These savings become much more 22,776, respectively. The dashed lines represent the law of
significant in simulations of high Reynolds number flows. the wall, and the log-law, u1 5 2.44 ln y1 1 5.0. The dotted

line shows the velocity profile obtained on a single zone
4.5. LES of Turbulent Channel Flow

coarse grid, 32 3 64 3 24. The mean velocity profile of
this simulation falls above the log-law and the experimentalWith the present computational capabilities, DNS of

turbulent flows at Reynolds numbers of engineering inter- data due to the insufficient resolution in the near-wall
region. The zonal embedded grid simulation is in a goodest are virtually impossible. Alternatively, one can perform

large eddy simulations (LES), i.e., compute the dynami- agreement with the experimental measurements. The re-
sults were improved by just refining the near-wall region.cally important large scale components of the flows and

TABLE I

Summary of LES Computations

Number
Rem 5

2Umd
n

Rec 5
Ucd
n

Ret 5
utd
nCase of zones Near-wall grid spacing

1 4.631 3 104 2.606 3 104 1110 1 Dx1 Q 220, Dz1 Q 70
2 4.631 3 104 2.624 3 104 1140 5 Dx1 Q 110, Dz1 Q 20
3 1.915 3 105 1.094 3 105 3990 9 Dx1 Q 130, Dz1 Q 20

Note. Um , Uc , and ut are bulk, centerline, and shear velocities, respectively.
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FIG. 12. Grid point distribution and y1-locations of zonal boundaries FIG. 14. Root-mean-square velocity fluctuations normalized by the
in LES of turbulent channel flow. wall shear velocity. LES of fully developed turbulent channel flow at

Rec 5 26,241. ———, urms on multi-zone embedded grid; ---, urms on
single-zone coarse grid; –––, vrms on multi-zone embedded grid; ???, vrms

on single-zone coarse grid; h, Experiment urms [23], Rec 5 23,191; d,
The resolvable turbulence intensities normalized by the Experiment urms , n, Experiment vrms [24], Rec 5 22,776.

wall shear velocity are shown in Fig. 14. The maximum
of the root-mean-square streamwise velocity fluctuations
obtained with one-zone coarse LES is much higher than profile, zonal grid simulations exhibited a much better rep-
that obtained in the experiments. This is a typical symptom resentation of the important turbulent structures in the
of a coarse LES computation. The refinement of the grid near-wall region and better turbulence intensities. For ex-
in the near-wall region alleviates this problem. As the mesh ample, Fig. 15 and Fig. 16 show spanwise two-point correla-
in the near-wall zone is refined in the streamwise and tions Ruu and Rvv for the multi-zone and single-zone simula-
spanwise directions the maximum of the rms of streamwise tions. The zero crossing and a pronounced negative
velocity approaches the experimental data. The overall minimum in the profile of Ruu clearly supports the existence
agreement of the computed turbulence intensities with the of low- and high-speed streaks in the case of zonal grid
experimental results is good. simulations. These structures are known to be dominant

In addition to the described zonal grid simulations, LES in turbulent boundary layers [25]. The profile of Ruu from
on a single zone grid with approximately the same total the single zone computation crosses the z-axis only slightly
number of mesh points as in the zonal grid (64 3 64 3 and shows nonphysical oscillations due to marginal resolu-
64) was performed. Although, minor differences between tion. Thus, in the case of the single grid simulation the
these two simulations were observed in the mean velocity

FIG. 13. Mean velocity profile of fully developed turbulent channel
flow at Rec 5 26,241. ———, LES on a zonal embedded grid; ---, LES
on 1-zone coarse grid; h, Experiment Rec 5 23,191 [23]; d, Experiment, FIG. 15. Spanwise two-point correlations Ruu(z) at y1 Q 20: ---, multi-

zone grid; ———, single zone grid with the same total number of points.Rec 5 22,776 [24].
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FIG. 18. Subgrid-scale shear stress in LES of turbulent channel flowFIG. 16. Spanwise two-point correlations Rvv(z) at y1 Q 20: ---, multi-
at Rem 5 4.631 3 104 on various grids: ??? 2 zonal boundaries.zone grid; ———, single zone grid with the same total number of points.

tion with the same number of grid points would have anstreaks are not resolved. The minimum of Rvv in Fig. 16
insufficient near-wall resolution and would be inaccurate.indicates the presence of streamwise vortical structures in

Averaged subgrid scale shear stresses for multi-zone andthe wall region. However, in the case of single zone grid,
single-zone large eddy simulations of turbulent channelthe profile of Rvv exhibits nonphysical oscillations. Clearly,
flow at Reynolds number Rem 5 4.631 3 104 are shownthe near-wall spanwise resolution is inadequate in this case.
in Fig. 18. As expected, the coarse grid calculations haveThe results of LES at high Reynolds number, Rec 5
a larger fraction of turbulent stresses in the subgrid-scale109,410, together with the experimental results of Comte-
motions. Most significantly, the subgrid scale shear stressesBellot [26] are shown in Fig. 17. The agreement between
in each zone follow the profiles of the single-zone simula-the numerical simulations and the experiment is very good.
tions with the same resolution as in the correspondingZonal grids provided an optimal mesh distribution and
zone. The same trend is observed in high Reynolds numbersubstantial CPU time savings in the computation of this
LES. This correct behavior of the turbulent stresses isflow. A single-zone simulation with the same near-wall
attributed to the robustness and consistency of the dynamicgrid resolution would require almost nine million points
subgrid-scale model.and would be much more expensive. A single-zone simula-

5. CONCLUSIONS

A B-spline based method on zonal embedded grids was
developed and applied to computations of two test flows
and DNS and LES of turbulent channel flow. The major
advantage of this new method is that it allows a reduction
in the computational costs of complex turbulent flow simu-
lations by introducing zonal embedded grids.

The method was successfully tested in the problem of
propagation of small disturbances in a channel flow and
the problem of the vortex dipole rebound from the wall.
In the latter test, it was shown that the zonal boundary
did not affect either the structure or the strength of the vor-
tices.

The DNS and LES calculations of a fully developed
turbulent channel flow indicated that the results on the
zonal embedded grid were in very good agreement with

FIG. 17. Mean velocity profile of fully developed turbulent channel
previously published numerical and experimental resultsflow at Rec 5 109,410. ———, LES on 9-zone embedded grid; s, Experi-
obtained for the same flow. The zonal grid calculationsment Rec 5 120,000 [26]. Lines --- show the locations of the zonal bound-

aries. needed only a fraction of the CPU time and memory re-
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